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Understanding superconductivity in low dimensional materials is of paramount importance in view 

of the discovery of a large number of exotic superconductors in recent times. In my thesis I have 

considered an electronic excitation based microscopic mechanism to examine the formation of 

Cooper pairs in a low- dimensional lattice system, in singlet channel with the s-wave like character 

of the pair wave function. Furthermore, a Fermi sea- like or rather a Fermi liquid- like background 

has been assumed for the pairing process to take place. Formulation of the problem and application 

to quasi-1D and quasi- 2D superconductors have been carried out. Though there are other 

interesting recent discoveries regarding low dimensional superconductors including Fe based 

superconductors and bisethylenedithio-tetrathiafulvalene for my thesis 

Tetramethyletetraselenafulvalence salts (TMTSF salts or Bechhgard salts) and overdoped phases of 

hole- doped cuprates have been chosen [1-6]. In this introduction part the background of my 

calculation, the history of the earlier works related with this one and the physical properties or 

characteristics, which my thesis based on are discussed. The second chapter consists of the general 

pairing equation for the low dimensional systems. The next two chapters are kept for the elaborate 

pairing scenario in respectively one and two dimensions. Finally there is a section on brief future 

plan. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

Low dimension: 

Now what is meant by a low dimensional system? When we are talking about low or reduced 

dimension we mean that the dimension of the sample is lower than a characteristic length which 

describe or differentiate the behaviour of electrons from that in higher dimensional systems like 

mean free path for transport, Fermi wave length for quantization or exciton Bohr radius in 

semiconductors etc. These characteristics length are bench mark, below this size, if the electrons are 

confined, then the materials may have new properties than in its bulk form.  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

These are some of the characteristic lengths, considered frequently: 

De Broglie wavelength 

Louis de Broglie in 1924 proposed that every kind of particle has both wave and particle properties. 

Small particles like electron with momentum p, has wavelike properties and the wavelength 
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associated with it is given by de Broglie wavelength λ = h

p
=

h

m∗v
 (m* is the effective electron 

mass). The following figure shows the wave nature associated with electrons in each orbit of an 

atom  

                                                       
Figure 2: The standing de Broglie wave of electrons in an atom is superimposed on 8th and 10th 

Bohr radius [7] 

The smaller the effective mass the larger is the de Broglie wavelength. Hence new quantum 

characteristics can be observed if one or two dimensions are of the order of de Broglie wavelength. 

If the velocity v is given to an electron by accelerating it through a potential difference V, then the 

work done on the electron is eV. This work done is converted into the kinetic energy of the 

electron. The expression for de Broglie wavelength is 

λ =
h

√2meV
 

 

 This is the wavelength associated with the electron (here relativistic correction of electron mass has 

been neglected) 

We can have a rough idea of the role of de Broglie wavelength on the dimensionality from the 

theoretical model of Rabinowitz (1993) [8]. As a rough approximation, he considered 

superconductivity to result simply from a 3D Bose-Einstein (B-E) condensation of the pairs and 

calculated critical temperatures Tc = Tc
BE. He shows a comparison of the experimentally observed 
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transition temperatures, Tc
Exp with TcBE for a series of high-Tc cuprate like compounds, together 

with the relevant input data for carrier densities, spacings d between adjacent conducting planes, 

m/m0=effective/free electron mass, and mb= 2m. The TcBE are in good agreement with Tc
Exp . A B-E 

condensation may occur in 2D-like systems if a small 3D interaction is present [9]. He invoked 

reduced dimensionality through equipartition principle and a convenient mapping of density of 

states (gD) via these following equations 

g3D = g3(ϵF)                                             for 3D system 

                       gquasi 2D =
g2(ϵF)

d
                 for cuprates containing array of 2D  

                                                                        planes with interplanar spacing d 

As 

B =
1

2
 ħωgD(ϵF

B is the number density of  pairs, ħω is the energy of a Cooper pair [8] 

 

Then 

 

                nquasi− 2D =
(nB)2
d

                             for anisotropic 2D material 

Where ħω be the energy interval within which incipient bosons (Cooper pairs) are forme, gD(ϵF) is 

the density of normal phase electronic states for both spins in D dimensions at the Fermi energy.  

A B-E condensation occurs when two electron pairs are separated by λ /2 i.e  

λ ≈ 2(nB)
−1/3                    

Where λ is de Broglie wavelength [8]. For a pair of electrons of effective mass 2m, momentum p, 

and kinetic energy  1
2
kBTc, the de Broglie wavelength is 

λ =
h

p
=

h

[2(2m)
1
2 kBTc]

1/2
 

 where f is the number of degrees of freedom per particle pair. For 3D motion of the bosons f = 3. 

This leads to the B-E condensation temperature in 3D as 

)  

where n

n
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Tc3 =
ħ

24kBm(n3)−2/3
                                   

For anisotropic 2D materials the equipartition of energy principle gives f =2. This yields the 

transition temperature  

Tc2 =
ħ

8kBm(n2/d)−2/3
                                   

Rabinowitz then carried out a detailed comparison of the experimentally observed transition 

temperatures, (Tc
Exp
) with both calculated Tc3 and Tc2 for a series of high-Tc cuprate like 

compounds using these formulae, with the relevant input data for de Broglie wavelength, carrier 

densities, spacings d, m/m0=effective/free electron mass, and mb= 2m. This investigation shows that  

Tc3 rather than Tc2 are in much better agreement with Tc
Exp. We have an important lesson from this 

result that although formation of pair in cuprates is a 2D phenomenon, transport of pair is 

completely 3 dimensional [8]. 

 

Mean free path: 

The mean free path of a particle or molecule is the average distance the particle travels between 

collisions with other moving particles. λ = (√2nσ)−1, where n is the particle number density and σ 

is the effective cross sectional area for spherical particles 

R. Bardo used the expression of entropy from the scaling theory of Edwards and Thouless and 

predicted a relationship between mean free path and the dimensionality through his theoretical 

analysis [10]. 

λ1 =
πL

2
exp

S
k                                        (1) 

 

∏km
km

λ2 = π exp
S
k                            (2) 

 

∏km
km

λ3(LaLbLc)
1/3) = (3π2/2) exp

S
k             (3) 
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where L is the size of the system, λ is the mean free path between collisions and km is the 

maximum wavevector, S is the entropy regarding any kind of phase transition (whether Pierl’s or 

superconducting type). The ordered electron paired state is reached by minimizing the entropy S in 

the regime 0 < 𝑇 ≤ Tc at a given pressure. From the above equations it is seen that the mean free 

path determines the behavior of entropy near the second order phase transition for three different 

dimensional systems. The last two equations can also be applied to quasi 1D and quasi 2D systems 

respectively. This is when λ1 ≫ λ2 , λ2 ≫ λ3 so that Squasi1D ≃ S1Dand λ2 ≫ λ1 , λ2 ≫ λ3 so that 

Squasi2D ≃ S2D 

As the compression stiffens the lattice, dL/dP <0 and according to equation (1) fluctuation 

decreases. So dS/dP > 0. So for superconductivity to occur, critical temperature must decrease 

with application of pressure (i.e. dTc/dP < 0) which is the case for maximum quasi one 

dimensional TMTSF salts. For example in case of (TMTSF)2PF6 dTc/dP is -0.1K/kbar. 

As for the case with the electron-doped high-Tc oxides, S has the 2-D character which will remain 

unchanged under pressure so that the superconducting transition can occur. In these materials, the 

interplanar Coulomb repulsion allows the planes to "skate" and retain to their 2D character under 

pressure. Under these circumstances, |dTc/dP| ≤ 0.1K/GPa, since S is independent of L.  
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TMTSF salts: 

 

 

                                         Figure 3: The molecular structure of TMTSF salts [11] 

Bechgaard salts with the general formula (TMTSF)2X, where X is a monovalent anion part such as 

PF6, ClO4, AsF6 etc. was first synthesized by Bechgaard et al. The 2:1 charge transfer salts is 

formed by transferring one electron from two TMTSF+ ions to one X− [12]. In most cases the 

negatively charged anions form a closed shell and do not contribute to the overall conductivity, so 

current is carried by the holes created on the TMTSF chains and the conductivity depends on the 

hole density and the complementary mobility. Besides, the size of the anion molecule dictates the 

spacing of the TMTSF coloumns, and produces an effect similar to that of an applied pressure.  In 

addition to its ionic character, the molecule is also partly covalent. The intramolecular bonding is 

stronger than the intermolecular effects in this material. Henceforth, the individual molecule 

approximation mainly decides the character of the bonding. The molecular orbitals from adjacent 

molecules in the chain overlap constructively resulting in formation of a large bandwidth. This 

makes the holes delocalized throughout the structure. Besides, a large overlap of electron clouds 

occurs from the formation of  π bonds in between the carbon and selenium atoms of the adjacent 

TMTSF radicals along the stacking axes (as shown in figure 3a) and perpendicular to molecular 

plane. In this picture the conductivity takes place in the plane of the paper with vertical direction 

(stacking axis) The TMTSF family exhibit this crystal structure with stacks of organic molecules 

separated by the coloumns of negatively charged anions (Figure 3a). The organic molecules are 

Stacking 
axis 
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nearly flat and aligned in a zigzag pattern down along the stacking axis (a direction) with a slight 

dimerization (figure 3b). The slight overlap between two adjacent stacks in the b direction (in plane 

and perpendicular to stacking axes) creates a weakly coupled 2-D character as pressure increases. 

The ratio of electron hopping energy in respectively a, b, and c direction (perpendicular to both 

plane of the paper and stacking axes) is 0.25:0.025:0.0025, which means electron transfer is 100 

times weaker in the weakest axis in comparison with the conducting axis.  

Cuprate superconductors: 

 

 Figure 4: Crystal structures of four cuprates superconductors [13] 

The class of cuprates are considered to be quasi-two-dimensional materials with their 

superconducting properties determined by electrons moving within weakly coupled copper-oxide 

(CuO2) layers which form the square lattices of Cu ions coupled with one another through oxygen 

ions [4,14]. Neighbouring layers containing ions such as lanthanum, barium, strontium, or other 

atoms act to stabilize the structure and inject electrons or holes onto the copper-oxide layers, 

resulting in a perovskite structure. The structure of all Cu-oxide superconductors has a block 

character. Depending on the composition, the elementary cell of a high-temperature 

superconducting compound can have one, two, and more cuprate layers. In this case, the critical 

https://en.wikipedia.org/wiki/Lanthanum
https://en.wikipedia.org/wiki/Barium
https://en.wikipedia.org/wiki/Strontium
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3725090_pnas.1301989110fig01.jpg
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temperature of the superconducting transition increases with the number of cuprate layers. An 

elementary cell of La2CuO4 is shown here. The maximum Tc ≈ 35 K. The size of the cell is 

characterized by the following parameters: a = b = 3.77 Å, c = 13.25 Å. Thus, the high-temperature 

superconductors are characterized by both large volumes of elementary cells and a clearly 

manifested anisotropy of layers. 

The following discussions are on the few additional important aspects related to superconductors in 

general including the low dimensional ones.  

1) Fermi liquid (FL) Theory (For normal phase): 

L. Landau put forward an idea that a weakly interacting 3- dimensional Fermi system is composed 

of some effective particles (quasi-particles) that behave as almost free fermions excepting that their 

masses and other characteristics are different from the corresponding non-interacting values [15]. If 

we promote only one particle to a state above the Fermi surface, the interaction will change the 

energy of all other fermions. However, Landau assumed that weakly excited states with energies 

near the Fermi level, can be described as a superposition of elementary excitations  (quasi-particles) 

which behave almost as free particles, with an effective mass m* different from the bare mass m, 

although the original system may as well be a highly interacting one i.e. 

δE[δn] =∑ εpδn(p⃗ )

p⃗⃗ ,σ

+∑∑ 

σ,σ′

 

p,⃗⃗  ⃗p′⃗⃗  ⃗

fσ,σ′ (p,⃗⃗⃗  p′⃗⃗⃗  ) δnσ(p⃗ )δnσ′(p′⃗⃗⃗  ) 

Where δn is the number of quasi particles producing excitation energy δE and the higher order 

correction describes the interaction among quasi particles with fσ,σ′(p,⃗⃗⃗  p′⃗⃗⃗  ) denoting interaction 

strength. If the system is isotropic and there is no magnetic field present, the quasiparticle with up 

spin (↑) has the same energy as the quasiparticle with down spin (↓).  Likewise, the interaction 

between quasiparticles depends only on the relative orientation of the spins σ and σ ′. So fσ,σ′(p,⃗⃗⃗  p′⃗⃗⃗  ) 

can be expressed by two additive parts viz. one is symmetric and corresponds to charge and the 

other is antisymmetric and corresponding to spin. The spin symmetric interaction is related 

proportionaly to the effective mass. The density- density correlation function in Fermi liquid is 

defined as                                                      
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ρ(r − r ′) = (1/Ω) ∑ eik
′.(r−r′)}

k′<kF

=
kF

3

2π2
 { 
Sin(kF|r − r

′|)

(kF|r − r ′|)3
−
Cos(kF|r − r

′|)

(kF|r − r ′|)3
} 

Where Ω is the normalization constant having dimensions of volume and kF is the Fermi 

momentum. The expression shows how the electrons are distributed at r ′around r.                                                                                                                                                                                                          

 
 

Figure 5- Distribution of electrons with spin parallel to that of the electron situated at r=0 

 

Adding the effect of electron electron interaction changes the energy of a single particle near the 

Fermi energy and is represented by Fermi liquid theory. To consider the e-e interaction effect, for 

high density electron gas the Hartree- Fock approximation and correlation corrections are generally 

adopted. There is however no satisfactory treatment even now of the influence of e-e interaction on 

quasi particle properties for general electron density. A rough resemblance of lattice effect can be 

mapped on this model by introducing a band structure effective mass m̃ instead of bare electron 

mass m. Kohn- Luttinger demonstrated a method of deriving m̃ using k.P perturbation theory [16]. 

So we can think of an almost Fermi liquid like picture with effective mass m̃∗ to describe 

interacting fermions on lattice in the high fermionic density limit, as is often encountered in real 

condensed matter systems. The simple Fermi liquid theory breaks down in the following cases: 1) 

Two-channel Kondo models- when two independent electrons can scatter from a magnetic impurity 

it leaves behind ‘half an electron’ [17]. 2) Disordered Kondo models. Here the scattering from 

disordered magnetic impurities is too strong to allow the Fermionic quasiparticles to form [18]. 3) 

Underdoped Mott- Hubbard insulators or very low density electron gas leading to Wigner solid [19] 
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2) s- wave, p- wave and d- wave superconducting pairing: 

A superconducting (Cooper pair) wavefunction has both a spin and an orbital (spatial) component.  

An s-wave and d- wave superconductor corresponds to a singlet state with {S=0; angular 

momentum ℓ=0} and {S=0; ℓ=2} respectively while the p-wave refers to a triplet state with 

{S=1; ℓ=1} [11]. The non-spin part of the superconducting order parameter can be expressed 

as Ψ(k⃗ ) ≈ ∆(k⃗ )eikφ(k⃗⃗ ), where ∆(k⃗ ) is the magnitude of the superconducting gap and φ(k⃗ ) is the 

phase of the order parameter, both of which may have a momentum-dependence in k-space [20].  

The magnitude of a superconducting gap roughly represents the energy required to break a Cooper 

pair.  The phase is a factor that the superconducting wavefunction aquires spontaneously below the 

transition temperature (Tc). In momentum space, a s-wave superconducting gap has isotropic 

magnitude in all directions, and it has a fixed phase in all directions.                                                                

Examples of the systems where different types of pairings are seen:- 

s-wave: Elemental superconductors such as Al, Nb, and Pb and binary like MgBr2, Y9Co7, high TC 

cuprate superconductors and Fe- pnictides [21]                                                                                                                           

d-wave: Cuprate high temperature superconductors, Heavy Fermion superconductors, Fe- pnictides 

[21]   

p- wave: Sr2RuO4[22] 

The above systems include both FL- characterized normal phases as well as those with non- Fermi 

liquid ones. 

 

3) Excitonic Mechanism: 

An exciton denotes a system of an electron and a hole bound together by their Coulomb interaction. 

When a photon excites an electron into the conduction band, a hole is left behind in the valence 

band; the electron, having a negative charge will be attracted to this hole and may (provided the 

energy is not too large) bind to the positively charged hole forming an exciton. Thus, the excitonic 

state is a bound state and represents a lower energy state than the band states. Therer are mainly 

three kinds of exciton as discussed below:-  

1) In materials with a small dielectric constant, the Coulomb interaction between an electron and a 

hole is strong and so the exciton tends to be small, of the same order as the size of the unit cell and 

https://en.wikipedia.org/wiki/Dielectric_constant
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is entirely located on the same molecule, as in fullerenes [23]. This is Frenkel exciton with a typical 

binding energy of the order of 0.1 to 1 eV. Frenkel excitons are typically found in alkali halide 

crystals and in organic molecular crystals composed of aromatic molecules, such 

as anthracene and tetracene [24].  

2) Wannier exciton states in 3D semiconductors are generally observed in very pure samples and at 

very low temperatures. In semiconductors, the dielectric constant is generally large. 

Consequently, electric field screening tends to reduce the Coulomb interaction between electrons 

and holes [25]. The binding energy is usually much less than that of a hydrogen atom, typically of 

the order of 0.01eV. The criterion for the stability of the Wannier exciton is that the average Bohr 

orbit of the exciton should be less than the distance between impurities. Let a very pure sample 

(1014 impurities/cm3) is doped lightly (to 1016 impurities/cm3).  A carrier concentration of 1016/cm3 

corresponds to finding an impurity ion within every 100 Å from some lattice point. The excitonic 

spectrum would be attenuated because of screening effects associated with the charged impurities. 

Let us consider an excitonic radius of around 100Å. If an impurity ion is located within this 

effective Bohr radius, then the electron- hole Coulomb interaction is screened by the impurity ion 

and the sharp spectrum associated with the excitons will disappear. Also in case of exciton in the 

indirect gap semiconductor because of the large difference in crystal momentum ћk between the 

valence band extremum and the lowest conduction band minimum, the exciton may acquire a large 

center of mass momentum corresponding to the momentum of the absorbed or emitted phonon ћq. 

For the indirect exciton, a large range of crystal momentum ћk values are possible and hence the 

exciton levels spread out into bands.  

3) In between the above two varities there exists another kind of exciton called charge transfer (CT) 

exciton. This is defined as a crystal state in which a hole and an electron, mainly on the adjacent 

sites, are bound together by their Coulomb force and diffuse as a pair within a near neighbour 

location [26]. The energy required to produce the CT exciton, must be less than that required to 

ionize a molecule completely. 

The first attempt to explore occurrence of superconductivity by invoking exciton was made by W. 

A. Little in 1964 [27]. He created a model consisting of two parts, a long chain called the "spine" in 

which electrons fill the various states and secondly, a series of arms or side chains attached to the 

spine as indicated in the following figure. He has shown that by appropriate choice of the molecules 

https://en.wikipedia.org/wiki/Fullerene
https://en.wikipedia.org/wiki/Electron_volt
https://en.wikipedia.org/wiki/Anthracene
https://en.wikipedia.org/wiki/Tetracene
https://en.wikipedia.org/wiki/Electric_field_screening
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which constitute the side chains, the oscillation of charge in these side chains can provide an 

interaction between the electrons moving in the spine. Let an electron in the spine near point P is in 

stable equilibrium with the electrons in the adjacent side chain of B. If the oscillating electron in the 

side chain goes further from the spine then the next electron in the spine becomes a bit loosely 

bound and feels attracted towards the previous electron in the spine.    

 

Figure 6: Proposed model of a superconducting organic molecule. The molecule A is a long 

unsaturated polyene chain called the spine. The molecules B are side chains attached to the spine at 

points 𝐏, 𝐏′….[27] 

An assumption has been made here that in this model there is negligible overlap between side 

chains, and also overlap between sites on the spine is relatively small. Though there is a very weak 

coupling between the stacks of (TMTSF)2X as is here in between the side chains of this model, no 

successful attempt of the incorporation of this theory on (TMTSF)2X has been made yet. Also the 

electronic transport in this model was not considered to be taken place in the way it happens in 

TMTSF salts through overlapping of π bonds (Reference: Introduction- Subtopic: TMTSF salts)   

 The possibility of the existence of two-dimensional superconductors was first proposed in 1964, 

much before the discovery of quasi two dimensional high- Tc superconductors [28].  The proposed 

mechanism was exciton based mechanism where the phonons are replaced by electronic excitations 

in a system of bound electrons. The excitonic energy range  ћωex = kBθex was taken to be of the 

order of 0.1-1 eV corresponding to the temperature θex~103 − 104K. Substituting this value in 
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place of θphonon in the BCS formula 

TC = θexexp (−
1

λ
) 

(Where λ is the coupling constant) the critical temperature was obtained as high as 500K. 

They say that `paper will withstand anything', but realization of such possibilities hasn’t taken place 

till date. 

 
In 1966 Toyazawa et al formed a model of an excited system with a hole in the valance band, 

attracting the electron in the conduction band through the square well potential extending over 3 

atoms, with the hole in the central atom. There is an interaction V between electrons of 

neighbouring atoms [29]. The atomic site energy difference is ∆ and the tight binding transfer 

integral is t. When the potential depth V is comparable to the half band width 2t (the model for 

ionic crystal), one can observe both local structure and band structure in the continuous spectrum. 

Varma adopted this model and incorporated it for the Cu and O atoms of the CuO2 plane of the 

doped La2CuO4. The relevant 2t to compare with V for strong localized excitonic effects then is the 

hopping amplitude connecting anti bonding and bonding orbitals [30]. 

In tetragonal La2CuO4, band structure calculations show that the copper dx2−y2 orbitals hybridize 

with the oxygen px and py orbitals leading to a bonding band about 2.5 eV wide and an anti-bonding 

band separated by about 3.5 eV which is about 3.5 eV wide. For undistorted La2CuO4, the anti-

bonding band is half-full. The one electron in this band is shared by the copper and the two oxygen 

atoms per unit cell in the basal plane. This implies that Cu fluctuates between Cu++ and Cu+ states 

while the two oxygen atoms fluctuate between O−− O−−and O−− O− states. In the acceptor-doped 

superconducting materials, the hole density is quite low (≤ 1022cm−3). This gives an interparticle 

spacing  rs ≥ 3 Å which is larger than the Cu-O separation of 1.9 Å in the basal plane. Thus we 

expect the charge transfer excitation Cu++O−− → Cu+O−  to be essentially unscreened. The 

unscreened energy difference or the difference in kinetic energy between these two configurations 

in a tight binding basis set within the unit cell is equal to the difference between the average 

bonding and antibonding band energy, which is about 6 ev. This indicates the possibility of a well 

localized unscreened particle-hole excitation (charge transfer exciton) of some energyω0. Based on 

this model, Varma estimated the value of ω0 to be ~0.5 eV for Lanthanum based cuprate 

superconductors [30].   
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Figure 7:  Schematic spectral weight of 𝐋𝐚𝟐𝐂𝐮𝐎𝟒. The particle hole spectrum extends to the 

bandwidth W and the charge transfer excitonic feature occurs around  𝛚𝟎 [30] 
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An electron pair in a superconductor does not behave like a point particle but instead its influence 

extends over a distance of about 1000 Å depending on value of coherence length of different 

superconductors. But there are many other Cooper pairs in this region and the spheres of 

influence of the pairs overlap extensively. These electrons continually exchange partners with 

each other i.e. they interact with each other. Overlap between the waves of the two electrons in a 

pair and then between the waves associated with the pairs results in the coherence or long range 

order which in turn can sustain persistent current in superconducting material. 

But in a purely low dimensional material supercurrents cannot persist for a long time and must 

decay mainly because of the absence of the phase transitions in low dimensional systems i.e. the 

absence of a long range order at finite temperature. 

The absence of long-range order of this simple form has been shown by Mermin and Wagner 

(1968) using rigorous calculation [1]. The Mermin–Wagner theorem states that continuous 

symmetries cannot be spontaneously broken at finite temperature in systems with sufficiently 

short-range interactions in dimensions d ≤ 2. The theorem can be conceptualized for low 

dimension that the excitation of spinwaves can destroy the ferromagnetic order [2]. 

Let the temperature-dependent magnetisation isM T = M T = 0 − ∆M(T), where ∆M(T) is the 

reduction of the magnetisation due to thermally excited spin-waves. ∆M(T) is calculated 

integrating over the density of states (DOS) N(E) of the excitations times their the probability for 

the thermal occupation  

∆M(T)  ∼  N E [
dE

e
E

kB T
−1

∞

0

]                                                 

DOS depends on the dimensionality of the system. The general case of excitations with a 

dispersion 

E ∼  kn  

is having a volume element in d-dimensional k space 

dv = kd−1dk 

So 

E 
d−1

n ∼ kd−1 

 

https://en.wikipedia.org/wiki/Spontaneously_broken
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Hence the DOS is  

                                          N E ∼  E
d−n

n                                     

Therefore for n=2 (dispersion of spin waves in ferromagnetic with Heisenberg- Hamiltonian 

model) and d=2 (two dimension) we have constant DOS and  

∆M(T)  ∼  constant [
dE

e
E

kB T − 1

∞

0

]                                         

 ∼ T  [
dE

e
E

kB T − 1

∞

0

] 

For small  
E

kB T
, 

e
E

kB T − 1 =
E

kB T
 

  

So we find that 

∆M(T)  ∼   [
dE

E
kB T

∞

0

]  

diverges logarithmically. This means that ∆M(T) diverges for finite T, indicating the breakdown 

of magnetic order for T > 0.  

 The reason for the absence of this order was also suggested by Peierls (1935) [3]. He has argued 

that thermal motion of long-wavelength phonons will destroy the long-range order of a two-

dimensional solid in the sense that the mean square deviation of an atom from its equilibrium 

position increases logarithmically with the size of the system. 

 Anderson has created a model relating ferromagnetism to superconductivity and using this one 

can show that the theory of the absence of long range order in the low dimensional ferromagnetic 

material holds in low dimensional superconducting material too at finite temperature [4].  

Anderson observed that if one considers a Cooper pair state to be identified with a “down-spin 

state” and the absence of a pair to be represented by a “up spin state” in particle hole space, i.e.  
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no pair: |⇑⟩ ≡ |0⟩, 

pair: | ⇓⟩ ≡ ck↑ϯ c−k↓
ϯ |0⟩ 

 then the BCS ground-state is revealed as a kind of Bloch domain wall formed around the Fermi 
surface. The BCS theory involves three key operators viz. the number operator 𝑛k↑ + 𝑛−k↓, the 
pair creation and pair annihilation operators, bkϯ = ck↑ϯ c−k↓

ϯ  and bk = c−k↓ck↑ respectively. Here 
these operators are further introduced as the components of a pseudo-spin. In the subspace where 
𝑛k↑ + 𝑛−k↓is either 0 or 2, the pseudospin takes the form 

2sz = 1 − nk − n−k =
empty
full

empty full

[
1 0
0 −1

]
 

 so that a fully occupied k state is a “down” pseudo-spin state, and an empty k-state is an “up” 

pseudo spin state. Similarly, the raising and lowering operators represent respectively, the pair 

destruction and creation operators, viz. 

bk = sxk + isyk = (
0 1
0 0

),                                             bk
ϯ = sxk − isyk = (

0 0
1 0

)  

Thus in this description, the BCS reduced Hamiltonian given by  

HRED = −2∑ ϵkszk −∑Vk,k′  (sxk + isyk)(sxk′  − isyk′  )

k,k′k

 

is a kind of anisotropic quantam spin model defined in momentum space. Anderson showed that 

in this language, the metal is a sharp domain wall along the Fermi surface while the 

superconductor has a soft “Bloch domain wall” (Fig 2a) in which the pseudospins rotate 

continuously from down (full) to sideways (linear combination of full and empty) to up (empty).  
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Figure 2: a) In Anderson domain wall interpretation of superconductivity the normal Fermi liquid 

is a sharp domain wall where the weiss field H vanishes at the Fermi surface. b) In the 

superconductor the pseudospins rotate smoothly and Weiss field never vanishes, giving rise to a 

finite gap [4]. 

The previous analysis establishes that long range superconductivity can’t occur in pure 1 or 2- 

dimensional systems at finite temperature, however the formation of cooper pair at very low 

temperature can still take place there. Besides, the word ‘quasi’ is very significant while 

discussing pure 1 or 2- dimensional systems. I had stated earlier in the introduction part that the 

materials I am working with are quasi 1- dimensional and quasi 2- dimensional systems. I now 

clarify that my treatment involving pairing theory is based on the following hypothesis:-  the 

phenomenon of superconductivity in quasi one dimensional and quasi two dimensional systems 

arises predominantly as a combination of two distinct processes viz. 

1) Cooper pair formation in a preferred chain/ layer i.e. intra- chain/ intra layer pair formation 

accompanied by  

2) inter- chain/ inter- layer pair tunneling at very low temperatures.            

The above hypothesis can be considered as the building block for the construction of microscopic 

theory for superconductivity in these low- dimensional anisotropic systems.                                                                              
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In quasi- one dimensional organic superconductor (TMTSF)2X,  t⊥ (the interchain single electron 

tunneling parameter) is an increasing function of induced pressure and this has a direct connection 

with the critical temperature Tc. A lot of work has been done on a system consisting of an infinite 

array of parallel metallic chains linked by a coupling parameter t⊥. It was found that, as t⊥ is 

increased from zero, but much less than ∆, where ∆ is the superconducting gap energy 

corresponding to the 1D system, then Tc increases with increasing t⊥. But when t⊥ > ∆, then Tc  

has a reciprocal relation with t⊥. (Though out of context here but it is interesting to note that ∆ 

gets related to Tc here like the well known BCS equation). It results from loss of coherence as 

hopping between chains takes place via individual electrons at large t⊥ instead of electron pairs at 

low t⊥. Therefore, for a lower magnitude of t⊥ (or by applying a lower amount of pressure) an 

enhancement in Tc can be achieved as pair tunneling becomes more favourable than individual 

carrier hopping in this regime. 

By studying the spectral density of the single particle excitations in quasi- two dimensional high 

temperature cuprate superconductors, Chakravarty and others have built a formalism, in which 

the Josephson critical current Ic is proportional ∆2/ωc, where ∆ is the superconducting gap and 

ωc  is the frequency scale of the order of the in-plane bandwidth [6]. In contrast, for a 

superconductor with Fermi liquid characterized normal phase, this is not possible because Ic is 

proportional to|∆|. The restructuring of the Josephson- effect allows one to form an interlayer 

Tunneling Hamiltonian in a non Fermi liquid background at sufficiently low energies and low 

temperatures in underdoped and optimally doped cuprate superconductors [6]. This implies 

emergence of superconductivity due to pair hopping through copper- oxide planes in HTSC, 

unlike single particle tunneling between the layers. This prominent class of examples of the 

exception from Fermi liquid theory refer to the metallic state above the superconducting 

transition temperature Tc near optimal doping. The strange metal phase exhibits thermodynamic 

and transport behavior significantly different from those of an ordinary metal. A particularly 

striking property of this metal phase is that the electrical resistivity increases linearly with 

temperature, in contrast to the quadratic temperature dependence of an ordinary metal. This 

remarkably simple behaviour is existing over a wide range of temperature, appearing in all 

cuprate superconductors. The anomalous behaviour can be answered with the help of 

photoemission experiments which can probe directly a Fermi surface and its low energy 
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excitations. In an Angular Resolved Photoemission Spectropy (ARPES) experiment, incident 

photons knock out electrons from the sample and the intensity I(k,ω) of the electron beam is 

proportional toA(k,ω)f(ωk), where f(ωk) is the Fermi-Dirac distribution and A(k,ω) is the 

electron spectral function defined by 

A(k,ω) = −(
1

π
) Im G(k,ω) 

ARPES experiments indicate that a Fermi surface still exists, but excitations exhibit a much 

broader peak than that for a Fermi liquid. The experimental results can be fit well to the 

following expression, postulated as “Marginal Fermi liquid” (MFL) [7], 

G(k,ω) = h/(ω− vF(k − kF) + Σ(k,ω)) 

with the self-energy ∑(ω, T)  of the electrons behaves like ∑Re(ω, T) ∼  ωln|ω| and ∑Im  ∼ |ω| 

for ω > T in contrast to ordinary Fermi liquid theory where ∑Re(ω, T)  ∼  ω and ∑Im  ∼  ω2      

Let us start by recalling the story for a non-interacting Fermi gas (e.g. a gas of electrons in a box) 

for which the many-particle states can be obtained by simply filing single-particle energy 

eigenstates following the Pauli exclusion  principle. The ground state is then given by filling all 

the (single-particle) states inside a sphere in momentum space with radius kF determined by the 

density of fermions and with all states outside the sphere empty. The locus of points in 

momentum space at the boundary of this sphere, k ≡  |k| = kF, is called the Fermi surface. The 

low-energy excitations of the system are given by either filling a state slightly outside the Fermi 

surface or removing a fermion from a filled state slightly inside the Fermi surface, and are called 

a particle and hole respectively. These excitations are gapless and have a linear dispersion ((k −

kF) ≪ kF ):  

ЄF =
k2

2m
−
kF

2

2m
=

1

2m
(k + kF)(k − kF) ≡

2kF
2m

(k − kF) = vF(k − kF)      

Particles and holes are distinguished by the sign of  (k − kF) . At a field theoretical level, these 

excitations manifest themselves as poles in the complex frequency plane of the retarded Green’s 

function G(k,ω) for the electron operator in momentum space 
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G(k,ω) =
1

ω− Єk + i0+
                          

 where ω is quasiparticle energy. The propagation of a particle of energy can be obtained by 

fouruer transforming this. 

G(t, k) = θ(t)eiЄkt                                   

The situation becomes complicated once we switch on interactions between fermions. An 

electron travelling in a solid distorts the lattice because of the Coulomb interaction with the ions. 

The lattice distortion in turn has a feedback on the electron dynamics, resulting in an increase of 

the electron mass and a shortening of the electron lifetime in a particular quasi-particle state. 

Within quantum field theory, this effect is described in terms of a complex self-energy ∑Im that 

the electron acquires. The real part of the self-energy describes the change in the electron energy, 

and the imaginary part provides information on the electron lifetime τ or scattering rate 1/ τ 

through  τ = ћ/∑Im    

 Landau’s Fermi liquid theory postulates that the qualitative picture for a non-interacting gas 

persists for generic interacting fermionic systems [8]. In particular, it assumes that despite strong 

interactions among fundamental fermions, the low energy excitations near the Fermi surface 

nevertheless behave like weakly interacting particles and holes, which are called quasi-particles 

and quasi-holes. They have the same electrical charge as those of fundamental fermions and 

obey Fermi statistics. The dispersion of a quasi-particle (similarly for a quasi-hole) resembles in 

free theory  

Є(k) = vF(k − kF) 

vF = kF/m
∗

 

where m∗ can be considered as the effective mass of the quasi-particle and is in general different 

from the original fermion mass m, from renormalization by many-body interactions. When 

turning on interactions, a particle (or hole) can now decay into another particle plus a number of 

particle-hole pairs. But it is not difficult to check that the exclusion principle constrains the phase 

space around a Fermi surface so much, that given generic local interactions among particles and 

holes, the decay (or scattering) rate of a particle (or hole) obeys 
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        τ~Є
2 k                                                  

where Є is the energy of a particle (or hole). Thus, despite potentially strong interactions, particle 

or hole excitations near the Fermi surface have a long lifetime still applies. Thus for a Fermi 

liquid, the fourier transformed Green's function should be modified to  

G t, k = θ t ei(Єk t−
τ
2

t)                                                        

which implies that near the Fermi surface the retarded function for the electron operator should 

have the form  

G k, ω =
Z

ω − vF k − kF + Σ k, ω 
             

with the self-energy Σ(ω, k) 

Σ =
iτ

2
  ~iω2                                                              

  The residue Z ≤ 1 of the pole, which is called the quasiparticle weight, can be interpreted as the 

overlap between the (approximate) one-quasiparticle state with the state generated by acting the 

electron operator on the vacuum. It is essentially the weightage of the coherent part of the 

propagator. 

But with the self-energy ∑(k, ω) given by ∑ k, ω ≈ Cωln ω + D|ω|,where C real and D 

complex, we see that the system appears to possess gapless excitations of dispersion relation =

vF k − kF . However, the decay rate 𝜏 of such excitations, which is given by the imaginary part 

of Σ, is now proportional to ω in contrast to ω 2 for a Fermi liquid. The decay rate, which is 

comparable to ω, is so large, that an excitation will already have decayed before it can propagate 

far enough (i.e. one wavelength) to show its particle-like properties. As a result, such an 

excitation can no longer be treated as a quasiparticle. Also the residue for the pole in the complex 

plane scales like 𝑍 ∼  1/ ln k − kF  as the Fermi surface is approached and thus the 

quasiparticle weight vanishes logarithmically. Thus at the Fermi surface the overlap of an 

excitation with original electrons vanishes. Mathematically, the singularity of A k, ω  at k =

kF   and ω =  0 is much softer than that for a Fermi liquid. Thus the strange metal phase of 

cuprates has a Fermi surface (i.e. there still exist a surface in momentum space which has gapless 
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excitations), but the quasiparticle picture breaks down.  From the perspective of renormalization 

group, it must be that the system is flowing to a nontrivial fixed point distinct from that for a 

Fermi liquid.  

Before I discuss my pairing investigation on low dimensional lattices it would be helpful to 

briefly review the conventional Cooper’s one pair problem in continuum [9].  

In the presence of an attractive interaction, the free electron state becomes unstable. The 

instability can be understood by considering two particular electrons of coordinates r1⃗⃗  ⃗ and r2⃗⃗  ⃗, The 

other electrons are still being treated as a free electron gas. Let ψ(r1⃗⃗  ⃗,σ1⃗⃗⃗⃗ , r2⃗⃗  ⃗,σ2)⃗⃗⃗⃗⃗⃗  be the 

wavefunction of the two electrons. Then 

ψ(r1⃗⃗  ⃗,σ1⃗⃗⃗⃗ , r2⃗⃗  ⃗,σ2)⃗⃗⃗⃗⃗⃗ =  φk⃗⃗ (r1⃗⃗  ⃗)e
iK⃗⃗ .R⃗⃗ χ(σ1⃗⃗⃗⃗  ,σ2⃗⃗⃗⃗ )                               (1) 

Where R⃗⃗  is the centre of mass R⃗⃗ = r1⃗⃗⃗⃗ +r2⃗⃗⃗⃗ 

2
, r =  r1⃗⃗  ⃗ −  r2⃗⃗  ⃗ and σ2⃗⃗⃗⃗  and σ2⃗⃗⃗⃗  denote the spins of the 

electrons (up or down) and (↑ or ↓)and ћk⃗  is the centre of mass momentum; φ
k⃗⃗ 
(r ) is the 

wavefunction in the relative co- ordinate space and χ denotes the spin wavefunction ( spin orbit 

coupling is neglected). In what follows we assume that pairing takes place in a singlet state for 

which 

χ =  
1

√2
[(
1

0
)(
0

1
) − (

0

1
)(
1

0
)]. 

Since the system is assumed to be translationally invariant and one neglects spin- dependent 

forces, the centre of mass  ћk⃗  of the pair and the total spin S are constants of motion. The orbital 

wave function of the pair can be written as,  

ψ(r1⃗⃗  ⃗, r2⃗⃗  ⃗) = φ
K⃗⃗ 
(r )eiK⃗⃗ .R⃗⃗  

Where ; 

φ
K⃗⃗ 
(r ) =∑ak⃗⃗ 

k⃗⃗ 

eik⃗⃗
 .r⃗  

(the basis wave functions are assumed to be plane wave functions in the case of continuum and if 

the wavevector of one electron is k⃗ + K⃗⃗ 

2
 and the another one −k⃗ + K⃗⃗ 

2
. So, 
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ψ(r1⃗⃗  ⃗, r2⃗⃗  ⃗) ≡ φ
K⃗⃗ 
(r ) =  ∑ak⃗⃗ 

k⃗⃗ 

eik⃗⃗
 .r⃗ eiK⃗⃗ .R⃗⃗ = ∑ak⃗⃗ 

k⃗⃗ 

ei(k⃗⃗
 +
K⃗⃗ 

2
).r1⃗⃗⃗⃗  e−i(k⃗⃗

 −
K⃗⃗ 

2
).r2⃗⃗⃗⃗                      (2) 

For zero centre of mass momentum |K⃗⃗  ⃗| = 0. So equation (2) reduces to 

ψ(r1⃗⃗  ⃗, r2⃗⃗  ⃗) ≡ φ
K⃗⃗ 
(r ) =  ∑ak⃗⃗ 

k⃗⃗ 

eik⃗⃗
 .r⃗ = ∑ak⃗⃗ 

k⃗⃗ 

eik⃗⃗
 .r1⃗⃗⃗⃗  e−ik⃗⃗

 .r2⃗⃗⃗⃗                       

The terms  eik⃗⃗ .r1⃗⃗⃗⃗  and e−ik⃗⃗ .r2⃗⃗⃗⃗  can be thought of as single particle states of momentum k⃗  and −k⃗ , we 

see that the pair wave function is a superposition of configuration in each of which a definite pair 

state   (k⃗ , −k⃗ ) is occupied. Here ak⃗⃗  is the probability amplitude for finding one electron in the 

plane- wave state of momentum ћk⃗  and the other electron in the state −ћk⃗  

Now from the Schroedinger equation for the two electrons is  

−
ℏ2

2m
( ∇1

2 + ∇2
2)φ(r 1 − r 2) + V(r 1, r 2)φ(r 1 − r 2) = ϵφ(r 1 − r 2)          (3) 

Where ϵ is the energy eigen value of the pair, Now we proceed further by multiplying with 

φ∗(r 1 − r 2) the both sides of the above equation, using the form of φ(r)⃗⃗  ⃗  

∑
ℏ2

2m
[(k⃗ + K⃗⃗ /2)

2
+ (k⃗ − K⃗⃗ /2)

2
ak⃗⃗ ak⃗⃗ ′

k⃗⃗ ,k′⃗⃗  ⃗

∫d3r1e
i(k⃗⃗ − k′⃗⃗  ⃗).r1⃗⃗⃗⃗ ∫d3r2e

i(k⃗⃗ − k′⃗⃗  ⃗).r2⃗⃗⃗⃗ 

+∑ak⃗⃗ ak⃗⃗ ′ ∬d3r1d
3r2e

ik⃗⃗ .r1⃗⃗⃗⃗ 

k⃗⃗ ,k′⃗⃗  ⃗

e−ik
′⃗⃗  ⃗.r1⃗⃗⃗⃗ V(r 1, r 2)e

ik′⃗⃗  ⃗.r2⃗⃗⃗⃗ e−ik⃗⃗
 .r2⃗⃗⃗⃗ 

=∑ ϵak⃗⃗ ak⃗⃗ ′ ∫d
3r1e

i(k⃗⃗ − k′⃗⃗  ⃗).r1⃗⃗⃗⃗ 

k⃗⃗ ,k′⃗⃗  ⃗

∫d3r2e
−i(k⃗⃗ − k′⃗⃗  ⃗).r2⃗⃗⃗⃗  

∑
ℏ2

2m
[(k⃗ + K⃗⃗ /2)

2
+ (k⃗ − K⃗⃗ /2)

2
ak⃗⃗ ak⃗⃗ ′

k⃗⃗ ,k′⃗⃗  ⃗

δ
2

k⃗⃗ ,k′⃗⃗  ⃗ +∑ak⃗⃗ ak⃗⃗ ′Vk⃗⃗ ,k′⃗⃗  ⃗ =

k⃗⃗ ,k′⃗⃗  ⃗

∑ ϵaka
′
kδ
2

k⃗⃗ ,k′⃗⃗  ⃗

k⃗⃗ ,k′⃗⃗  ⃗

 

ak⃗⃗ 
ℏ2

2m
[(k⃗ +

K⃗⃗ 

2
)

2

+ (k⃗ −
K⃗⃗ 

2
)

2

] + ∑ak⃗⃗ ′

 k′⃗⃗  ⃗

V
k⃗⃗ ,k′⃗⃗  ⃗ = ϵak⃗⃗                            (4) 
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The quantity Vk,⃗⃗⃗  k′⃗⃗  ⃗ 
 is the Fourier transform of the attractive contact interaction (−uδ(r 1 −

r 2)), being equal to (−  u/Ld) and is present only within a small region beyond the Fermi points/ 

Fermi circle/ Fermi surface i.e outside where the pairing would take place (usual Cooper’s 

model).Then equation (4) reduces to 

∑{
ℏ2

2m
[(k⃗ +

K⃗⃗ 

2
)

2

+ (k⃗ −
K⃗⃗ 

2
)

2

+ ϵ} ak⃗⃗ = C 

k⃗⃗ ,k′⃗⃗  ⃗

 

Where 

C = −u/Ld∑ak⃗⃗ ′

k′⃗⃗  ⃗

 

This leads to 

ak⃗⃗ =
−u/Ld∑ ak⃗⃗ ′k′⃗⃗  ⃗

{−
ℏ2

2m
[(k⃗ +

K⃗⃗ 

2)

2

+ (k⃗ −
K⃗⃗ 

2)

2

] + ϵ}

                              (5) 

Now summing over all k⃗ , the constant ∑ ak⃗⃗ k⃗⃗  appears on both sides. Then we can cast the self 

consistency condition in the following form, 

1 = u/Ld∑
1

{
ℏ2

2m
[(k⃗ +

K⃗⃗ 

2)

2

+ (k⃗ −
K⃗⃗ 

2)

2

] − ϵ}k′⃗⃗  ⃗

                       (6) 

The above equation corresponding to zero centre of mass momentum becomes 

1 = u/Ld∑
1

{
ℏ2

2m2Єk − ϵ}k

 

Now in our  case of pairing corresponding to zero centre of mass momentum, in the background 

of nearest neighbor tight binding 1D or 2D lattice system with Bloch functions acting as the basis 

functions, equation (4) takes the form:-  

                                               2ak⃗⃗ Єk +∑ak ⃗⃗  ⃗′

k ⃗⃗  ⃗′

Vk,⃗⃗⃗  k′⃗⃗  ⃗ = ϵak⃗⃗    
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leading to                            2Єk ak⃗⃗ − ∑ ak ⃗⃗  ⃗′k ⃗⃗  ⃗′  u/Ld =  ϵak⃗⃗                                   (7) 

Where Єk , the lattice dispersion energy, replaces the free electron energy. L is length and‘d’ is 

the dimension of the system. The quantity Єk has the following forms corresponding to i) a 

nearest neighbor tight binding model and ii) next to next nearest (nnn) neighbor hopping model:- 

 Єk 

= {
Є0 − 2tCos(ka)   (used for 1D)

Є0 − 2t(Coskxa+ Coskya) + 4t′Coskxa.Coskya− 2t′′(Cos2kxa + Cos2kya) (used for 2D)
   

                                                                                              (8)  

Here ′a′ is the lattice constant; t, t′, t′′are the single particle hopping parameters corresponding to the 

nearest, next near neighbour and second next near neighbour respectively on the lattice, ϵ  is the two 

particle energy eigen value as before. L → ∞ for a macroscopic system. It may be remarked that my 

lattice Hamiltonian for Cooper pairing looks somewhat similar to negative - U Hubbard model, 

although the attraction here operates only within a finite energy interval. Summing over k⃗  on both 

sides of equation (7) and taking the continuum limit, we get for 1D  

 

1 = (
u

L
) (

L

2π
)∫

D(Є̃k )dЄ̃k 

(|W| + 2Є̃k )

Є̃
k⃗  up

Є̃
k⃗  low

                                                                       (9) 

                                                                                                                                                                                             

In case of 2D system ‘L’ will be replaced by L2in the above equation.  

A new variable Є̃k = Єk − ЄF is introduced here within the standard form of density of states 

(DOS) where the form of 1D DOS is  

D(Є̃k ) =
1

2at√1− (
Є̃k + ЄF –Є0

2t
)

2

                                    (9a) 
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(Є̃
k⃗  up
) = ЄF + 4t(1− δ) + (ћωboson − 4t(1− δ))  θ (4t(1− δ) − ћωboson)                                                                                                                                                                                                                               

(Є̃
k⃗  low

) = ЄF  

and 2D DOS takes the form  

D(Є̃k ) = Κ√1 − (
Є̃k + ЄF –Є0

2t
)

2

                     (9b) 

 

   K is the elliptic integral of first kind. 

(Є̃
k⃗  up
) = ЄF + 8t(1− δ) + (ћωboson − 8(1− δ))  θ (8t(1− δ) − ћωboson)                                                                                                                                                                                                                               

(Є̃
k⃗  low

) = ЄF ,     

Here δ is band filling factor. Besides, |W| represents the binding energy of the two electrons 

with −|W| = ϵ − 2ЄF  for ϵ < 2ЄF , where ЄF  
is the Fermi energy corresponding to a particular 

filling. It must be emphasized that the quantity ћωboson, is the characteristic energy of the exciton 

mediating the pairing interaction and is of the order of the band width itself for the Bechhgard 

salts and cuprates. Therefore very importantly the electronic DOS function has been kept within 

the integrand in the above equation (9). It is to be noted that this is a very important departure 

from the original calculations of Cooper, where the calculation was done for a boson, having a 

very small energy range for attractive interaction above the Fermi surface. Therefore the energy 

variation of DOS function was completely neglected there. In the next chapters, the non trivial 

variation of DOS with energy will be shown to lead to realistic consequences, missed out in 

Cooper’s simple treatment. 

For marginal Fermi liquid like picture the density of states is 

D(ω) = ∑−Im[G(k,ω)/π)/

k

N2       

                                             Where 

G(k,ω) = (
1

π
)[1/(ω− ЄF − ∑(k,ω))] 
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and N2 is the number of lattice sites in plane. The above form of the Green’s function for a single 

fermion on the 2D lattice, includes the self energy corrections ∑(k,ω) to implement the many 

body effects within the system, where 

∑(k,ω) = ∑Re(k, ω) + i ∑Im(k,ω) 

∑Re(k, ω) ∝ ω log(
|ω|

ωc
)and ∑Im(k,ω) ∝  |ω|for |ω| >  T 

Instead of infinite extent the range of the integration is kept limited in between the band width 

though. We have explicitely checked the applicability of this expression by plotting the real part 

of self energy against frequency. 

 Our calculational results corresponding to Cooper pairs with finite centre of mass momentum, are 

helpful to highlight the spatial nature of the pair wave function [10]. For finite centre of mass 

momentum in 1D 

Є̃k+q/2 = Є0 − 2tCos(k⃗ +
q⃗ 

2
) . a − ЄF  

 

Є̃k+q/2 = Є
0 
– 2t [Cos(ka)Cos (

qa

2
) ± Sin(ka)Sin (

qa

2
)] − ЄF  

Depending on the orientation between a  and q⃗  

Є̃k+q/2 = Є
0 
– 2t [Cos(ka) ± Sin(ka) (

qa

2
)] − ЄF  

We have slightly modified the real part and take it as  

∑Re(k, ω) = gω log((|ω| + ε)/ωc)for |ω| >  T,     (10) 

ε  is a doping dependent parameter which increases with reduced wave vector. This is associated 

with the imaginary self energy which is derived by plugging Kramers- Kronig relation viz. 

∑Im(k, ω) = −(
1

π
)∫ [

∑Re(k, ω)dω

(ω −ω′)

∞

−∞

   ]          (11) 
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Considering |q|⃗⃗⃗⃗  ⃗ to be small compared to |k|⃗⃗  ⃗, 

Є̃k+q/2 =  Є0 − 2tCos(ka) ± 2t Sin(ka) (
qa

2
) − ЄF  

Є̃k+q/2 = Є̃k ± atq Sin(ka) 

Similarly  

Є̃k−q/2 = Є̃k ± atq Sin(ka) 

Since Є̃
k⃗ +

q

2

  
 and Є̃

k⃗ −
q

2

  
 are symmetric in k⃗  space about the minimum of the band, the calculation 

will be carried out taking just one among them  

  

(Є̃
k⃗  up
)fin = 4t(1− δ) − atqSin(ka)  + (ћωboson − 4t(1− δ))θ(4t(1− δ) − ћωboson)  

and 

(Є̃
k⃗  low

)fin = atq Sin(ka) 

The maximum allowed pairing wave vector ‘qmax’ (defined by |W|q = 0 for q= qmax) gives us an 

estimate of the coherence length (′ξ′), which is of the order of reciprocal of qmax. However the 

relation between |W|and q here is monotonically decreasing [10].    

It may be noted that although N(Є) is a variable here, to have an idea about the strength of the 

coupling, different values of u/Ld for a particular band filling are multiplied by the DOS at the 

Fermi energy corresponding to that filling. The expression for the coupling constant (λ) is 

λ = (u/Ld)N(ЄF) 

At a higher filling the coupling is weaker for a particular pairing energy range, as can be seen in 

the next chapters, very similar to what happens in the original Cooper’s treatment appropriate to 

1D.  
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                          3. Pairing in one dimension 
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This part of my thesis deals with pairing mechanism in quasi one- dimensional systems [1]. In 

the case of quasi-1D organic superconductors, many important questions came up regarding the 

pairing mechanism and the nature of the pairing symmetry. As described earlier, I have 

considered here an electronic excitation mediated mechanism for (TMTSF)2X salts or Bechhgard 

salts to examine intra- chain pairing between two electrons in a band, involving singlets 

character of the pair wave function in a Fermi- sea like background.  It must be emphasized 

however that Bechhgard salts are only considered as possible support for the phenomenological 

scenario arising from our general formalism and calculations. 

The Fermi liquid (FL) model for interacting fermions shows a break down in a purely one-

dimensional medium due to the loss of well-defined quasiparticles [2]. The simple decay process 

of a quasiparticle with wave vector k1 outside the Fermi sea colliding with a particle in an 

occupied state of wave vector k2 inside the sea creates two quasiparticles, wave vectors k1
′ and 

k2
′ at low temperature close enough to the Fermi sea. The life time of this excited state is 

inversely proportional to collision rates [2], 

 
1

τ
∝ ∑ W(k1, k2 → k1

′, k2
′) × δ(k

1
+ k2 − k1

′ − k2
′

k2,k1
′,k2

′

) × δ(ϵk1
+ ϵk2

− ϵ
k1

′ − ϵ
k2

′) × nk2
(1

− n
k1

′)(1− n
k2

′) 

 

Here W is the transition probability and the Dirac delta functions represents conservation of 

(crystal) momentum and energy. The three factors at the end are just the probabilites of the 

existence of particles and holes involved in the process, excluding the initially free particle. In 

three dimensions at zero temperature, the life time τ diverges at the Fermi surface, causing the 

quasiparticles to be well-defined. However, in one dimension, even at zero temperature, the 

integral is found to yield a life time τ = 0 at the Fermi points. This means that there are no stable 

quasiparticles, and thus the Fermi liquid theory breaks down. The Luttinger- Tomonaga Liquid 

LTL) model is constructed to replace FL theory in one dimension. Tomonaga and Luttinger 

proposed that instead of individual electron motion, the collective motion of fermions involving 

both spin degrees of freedom and charge degrees of freedom should be treated in terms of 

harmonic oscillator description to describe the 1-D system [3]. The new quasi-particles emerging 
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in this theory are of bosonic character, they are ‘holons’(having spin zero and charge ‘e’) and 

‘spinons’(having spin 1 and charge neutral). In this formalism all the physical quantities are 

expressed in terms of the charge and spin density operators of fermions, which obey the quantum 

commutation relation.  

The most striking behaviour in LTL theory, is the anomalous power-law dependence of various 

correlation functions in the low-energy region in the normal phase. For example, the density-

density correlation function between two distant positions x and x′ exhibits the power-law 

dependence in the asymptotic region [3] 

< ρ x ρ x′ > ~e2ikF x−x′ (x − x′)−α 

The critical exponent α changes continuously depending on the strength of the interaction 

between particles. Thus the density of states for the LTL at the Fermi energy vanishes like 

|E − ЄF |
β (for repulsive interactions) and the jump in the single particle occupation number 

vanishes as ~(k − kF)α[3]. 

Now, the phenomenon of superconductivity occurs in many of these quasi 1-D superconductors 

at very low temperatures viz. at around 1-2K; whereas the possible applicability of LTL theory to 

these systems is confined to much higher temperature regime where the inter-chain coupling is 

broken. For a typical Bechhgard salt, this temperature comes to about 300K. As the occurrence 

of superconductivity in these systems at low temperature strictly requires the presence of both 

intra-chain pair formation and inter-chain pair hopping processes as has been discussed earlier, 

these systems are truly quasi- 1-D like (rather than 1D) in its behaviour particularly at low 

temperature even in the normal phase as stated previously in the introduction  [4]. Therefore, the 

LTL model description of the normal phase of quasi- 1D superconductors as non-Fermi liquid 

(NFL) system at high temperature, is not relevant for superconductivity at all [5]. 

It has been reported that neither the low-energy mode nor the conductivity below the Mott gap 

observed in experiments in the normal phases of organic superconductors, can be described 

quantitatively by a simple one-dimensional theory. In a purely 1D theory the conductivity σω 

should grow as ~ω3 in the frequency region between the Drude peak and the Mott peak, 

however such a power law behaviour is not observed experimentally [6]. In addition, in a doped 

one-dimensional system the width of the ω = 0 peak should remain extremely narrow since all 
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Soda et al showed that the behaviour of quasi-one-dimensional materials can be classified 

according to whether the transverse motion is diffusive or coherent. In the former case the 

material exhibits 1D behaviour (for example, TTF-TCNQ) whereas in the latter it will behave as 

an anisotropic 3D material (for example, TMTTF-TCNQ) [8,9].  

The crossover between these regimes is determined by the criterion 

τ‖t⊥~ħ 

where τ‖ is the intra- stack carrier lifetime. The crossover condition is satisfied for (TMTSF)2PF6  

at a temperature of 45 K. This crossover temperature is checked and recalculated using the 

temperature dependence of σ|| (longitudinal conductivity), which means that at low temperatures 

at ambient pressure (TMTSF)2PF6 should have three dimensional characteristics [10]. Therefore 

the theorems for strictly one dimensional system will not be valid in this kind of material. 

The electronic structural configurations of TMTSF)2 X where both ionicity and covalency 

coexist, may exhibit some anomalous behavior in the optical properties [Reference: Introduction, 

with subtitle TMTSF salts] . This is manifested in the optical conductivity vs frequency graph of 

(TMTSF)2 AsF6 , that shows besides the usual distinct Drude- like peak, an extra hump or peak 

(in ev range) which may originate from an electronic excitation, as phonons can never acquire 

such a high energy [11]. Hence the conductivity is described by a non- Drude like functional 

form σ0 ω  in addition to the usual Drude one σD ω , characterized by and satisfying the 

following relations:- 

                         σD ω =  
ωpD

2

4π
 

ΓD

ω2 + ΓD
2

                                            (1) 

                        σ0 ω =  
ωp0

2

4π
 

ω2Γ0

(ω2 − ωboson
2 )2   + ω2Γ0

2
                    2  

                         σD ω dω
∞

0

+  σ0 ω dω
∞

0

=
ωp

2

8
                                3  

electron-electron scattering that can lead to dissipation has been shifted to higher energy [7] . 

This however contradicts the experimental results. 
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Where Γ is the scattering rate of carriers, ωpis the plasma frequency of the material, ωboson is the 

position for the non Drude peak, here for (TMTSF)2 AsF6 . Although I have argued in the 

introduction section that above T ≈ 300K the electronic properties may conform to the LTL 

description, the standard functional characterization by Fermi liquid (FL) like approach has been 

carried out by me, to extract the Drude and non-Drude components. This was done by generating 

the theoretical graph as close as possible to the experimentally obtained one for (TMTSF)2 AsF6, 

using the above Drude and non- Drude like expressions and the well known f- sum rule (equation 

3) [7]. 
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Figure 1.1: Experimentally measured absorptivity of 

(TMTSF)2AsF6 vs. frequency, along  the highest            

conducting axis at different temperatures [7] 

 

 

 

  

Figure 1.2: Theoretically obtained 

absorptivity (which is the closest to 

figure 1.1) of the same material (left) as a 

function of frequency at 300k.     

 

 

Figure 1.3 :  Another example of the theoretically 

obtained absorptivity of the same material as a 

function of frequency at 300k 

 

 

Figure 1.4: Figure 1.4: Another example 

of the theoretically obtained absorptivity 

of the same material as a function of 

frequency at 300k 

Figure1. Experimentally measured and theoretically obtained absorptivity of (TMTSF)2 AsF6  

The peak value of the non- Drude portion of the best fitted graph (figure: 1.2) has been identified 

with  ωboson in equation 9(a) of chapter 2: general equation and it has the following values of 

parameters (as presented in Table 1).  
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Table1. Values of different parameters extracted for (TMTSF)2 AsF6 [12] 

  Theoretical       Experimental 

    Material  ћωo or 

 ћωboson  

in cm-1 

Effective plasma  

Frequency from Drude 

 part in  cm-1 (ωpD) 

Plasma frequency 

 in cm-1 (ωp) 

 

 Plasma frequency 

 in cm-1 [12] 

 

(TMTSF)2AsF6 1050   

( 0.12 ev) 

1449  9061          9900 

 

The spectral weight obtained by integrating the Drude functional form appearing in equation (3) 

is around 1.6% of the total spectral weight. The extracted bosonic energy value is 0.12 ev; 

however a small variation in the value of bosonic energy doesn’t lead to any qualitative change 

in our main result.  

    After performing the integration by parts on the right hand side of equation (9) of chapter 2: 

general equation we get,  

1 = (
u

L
) (

L

2π × 2at
)

{
 
 

 
 

[
 
 
 
 2tSin

−1 (
Є̃

k⃗  + ЄF –Є0

2t
)

(|W| + 2Є̃
k⃗  
)

]
 
 
 
 

(Є̃
k⃗  low

)

(Є̃
k⃗  up

)

 

+ ∫ {
2

(|W| + 2Є̃k )
2

(Є̃
k⃗  up

(Є̃
k⃗  low

)

∫
dЄ̃k 

√1 − (
Є̃k + ЄF –Є0

2t
)

2

}  dЄ̃k 

}
 
 

 
 

                       (4) 

 

Now the second part above in the right hand side of equation (4) coincides with a standard form 

of integration, having two solutions under two different conditions [13]:-  

If  a2 > b
2  , where a = |W| + 4tCoskFa  and  b = 4t, then 
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∫
arcSinx dx

(a+ bx)2
=

arcSinx

b(a+ bx)
− 

2

b√a2 − b
2

arctan√
(a− b)(1− x)

(a+ b)(1+ x)
                                       (5) 

 (This is referred to as the 1st integral formula throughout the rest of the paper)    

and if  b2 > a2 then                    

∫
arcSinx dx

(a+ bx)2
=     

arcSinx

b(a+ bx)
− 

1

b√b
2 − a2

ln
√(a+ b)(1+ x) + √(b− a)(1− x)

√(a+ b)(1+ x) − √(b− a)(1− x)
 

                                                                                                                                      (6) 

 (This is referred to as the 2nd integral formula throughout the rest of the paper)                                          

 

 

 

 

 

 

 

 

 

 

 

 

 

  The different situations, arising from the above formulae are discussed in the following table  
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Table 2. Summarized result obtained using 1st (left) and 2nd (right) formula [12] 

a2 > b
2  →  |W|2 + 16t2Cos2kFa+ 8t|W|CoskFa > 16t2 

 

b
2 > a2   → |W|2 + 16t2Cos2kFa 

+ 8t|W|CoskFa < 16t2 

[1]The pairing energy equation according to this 

criterion is 

1 = (
u

L
) (

1

γ
)

−4t

√(|W| + 4tCoskFa)2 − (4t)2
 

{
 
 

 
 

[
 
 
 
 

tan−1(
(|W| + 4tCoskFa− 4t) (1−

Є̃k − 2tCoskFa
2t

)

(|W| + 4tCoskFa+ 4t) (1+
Є̃k − 2tCoskFa

2t
)

)

1
2

]
 
 
 
 

ћωel

−

[
 
 
 
 

tan−1(
(|W| + 4tCoskFa − 4t) (1−

Є̃k − 2tCoskFa
2t

)

(|W| + 4tCoskFa + 4t) (1+
Є̃k − 2tCoskFa

2t
)

)

1
2

]
 
 
 
 

0

}
 
 

 
 

 

where γ

=
4πat

L
                                                    (7.1)               

                                                                          

[1]Pairing energy equation according to this 

criterion is 

1 = (
u

Lγ
) (

−2t

√(4t)2 − (|W| + 4tCoskFa)2
) 

            × {ln
[
A+ B
A− B

]
Є̃

k⃗  up 

[
A+ B
A− B

]
Є̃

k⃗  low 

} 

where  

        A = [

(4t + |W| − 2(ЄF –Є0))

× (1+
Є̃k + ЄF − Є0

2t
)
]

1
2

  

B = [

(4t − |W| + 2(ЄF –Є0))

× (1−
Є̃k + ЄF –Є0

2t
)
]

1
2

    

and γ =
4πat

L
                        (7.2)    

 [2]If the filling factor tends to zero then the above 

inequality turns out to be |W|2 + 16t2 + 8t|W| > 16t2. 

Therefore pairing easily takes place at very low filling 

with very small value of pairing energy. At the limit of 

complete filling of the band, this inequality takes the 

form of |W|2 + 16t2 − 8t|W| > 16t2, implying |W| >

8t. This implies that the pairing energy will be very high 

[2] The above equation shows that to get         

the desired value of 1 at L.H.S for an 

infinitesimal u, the rest portion at R.H.S  has 

to be infinite, which is achieved at |W| → 0, 

like Cooper case. A very important 

consequence of my calculations from these 

above equations (7.1 and 7.2) is that the 
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and comparable to hopping amplitude at higher filling. 

Besides, the condition points towards a finite starting 

value of pairing energy unlike Cooper’s original case. 

Thus we can’t get the situation of  |W|0 = 0 here.  The 

high filling situation is described at point 3 below.  

admissible solutions give an upper bound to 

|W|. This is in sharp contrast to the 

continuum case of Cooper, where no such 

feature is seen.  

[3]For having admissible values for the pairing energy 

equation above, only the following relations involving 

two sets of |W| and ћωboson are relevant:- 

1. {
|W| > 4t(1 − CoskFa)

 ћωboson < 2𝑡(1 + CoskFa)
 and 

 2. {
|W| > −4𝑡(1 + CoskFa)

 ћωboson > 2𝑡(CoskFa − 1) 
 

Besides the simultaneous non vanishing of inverse 

tangential parts implies 

3. |W| + 4tCoskFa − 4t ≠ 0  and  

4. {
2t(1+ CoskFa) ≠ ћωboson

2t ≠ −2tCoskFa
 

Inequality 4. is violated at kFa = π. implies that at full 

filling of the band no possibility of pairing exists. 

[3]Same conditions or inequalities appear 

for having admissible values of the pairing 

energy equation. An important result 

follows from this inequality viz. ћωboson <

2t(1+ CoskFa) [see inequality (8) on the 

next page]. This implies a maximum 

allowed value of Fermi momentum, above 

which the pairing equation will be non 

tractable and it also relates a minimum 

threshold value of ′t′ for a particular filling 

and bosonic energy. 

3.1 Zero Centre of Mass Momentum:                                                                                                     

 From the admissible inequalities of Table-2, we have chosen 

ћωboson < 2t(1+ CoskFa)                                                                    (8) 

 to extract some significant physics out. Let us consider, if the band is half filled then 2t >

ћωboson. In fact for each filling there is a corresponding minimum allowed value of ′t′, which is 

determined by the magnitude of bosonic energy. After incorporating the numerical values of 

parameters viz.‘t’ (0.25 ev) and  ћωboson (reference Table 1) for (TMTSF)2AsF6 the same 

inequality (8) leads to kFa < 7/9 and hence δ < 7/9 (the Fermi points being ±kF ) [14]. Above 
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this critical filling viz. for δ ≥ 7/9 the pairing equation becomes non tractable. It may be noted 

that real Bechhgard salts exhibit an energy gap due to dimerization at around δ ≈ 3/4  and hence 

is not conducting for δ > 3/4  [15]. So my theoretical results are consistent with this material 

property, regarding pair formation only in the highest conducting axis and pair transport through 

the transverse directions. 

Based upon the above critical value of the Fermi momentum or filling factor, a distinct division 

of the whole electronic band can be done into two regions viz. (i) tractable regime and (ii) non-

tractable regime. The graphs below are drawn using values of |W|, lower than its upper bound in 

tractable region, discussed in Table 2, for different values of attractive interaction energy.       

Table 3a: Plot of |W| for different values of attractive interaction energy. 

 

The nature of the coupling constant is very similar to that obtained from the original Cooper’s 

treatment appropriate to 1D. At a higher filling the coupling is weaker for a particular pairing 

energy range, as can be seen in Figures on next page- 
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Table 3b: Plot of |W| vs. coupling constant 

 

 

Now combining the well known Barden, Cooper, Schrieffer (BCS) theory and Cooper equations 

corresponding to weak coupling, viz. [16] 

2Δ0

KTc
= 3.5                                                                    (9a) 

kTc = 1.13ћωboson exp  −
1

λ
                                     (9b) 

and                                     

|W| = 2ћωboson exp  −
2

λ
                                           (9c) 

We get  

Δ0

|W|
= 0.98875 × exp  

1

λ
                                              (9d) 

Where ‘Δ0’ is the superconducting energy gap at zero temperature, the value of which is taken to 

be of  0.22 mev, obtained from tunneling spectroscopy .  ‘|W|’ is the Cooper pair binding energy 

in 3D isotropic system and ‘λ’ is the attractive coupling constant.  Using these expressions I 

derived the values of coupling constant and made the following comparison- chart. 

 

 



56 
 

Table-4: Comparison between the λ obtained from my calculation and by the conventional 

method discussed above. 

The value of pairing 

energy (in eV) 

Corresponding λ  from our 

graph [pure 1D] (Figure 3) 

Corresponding λ  obtained by using 

BCS equation [3D isotropic] 

(equation 9d) 

8.55 × 10−8 0.13 0.13 

2.516 × 10−7 0.14 0.15 

0.97 × 10−6 0.15 0.19 

 

It should be mentioned here that Ishiguro and co-workers found BCS theory to be consistent for 

(TMTSF)2 X, while analysing tunneling spectroscopy data [17]. However the usage of these 

expressions should be quite restricted as these expressions are meant for 3D isotropic BCS 

system, whereas the experimental system is truly quasi-1D. Also, my calculation is performed 

here on a one- dimensional lattice, whereas the experimental results for these quasi 1-D systems 

correspond to a 3D- anisotropic behavior of the superconducting energy gap. Nevertheless, an 

estimate of the magnitude of the coupling constants obtained from the above two methods are 

presented in Table: 4 for some general interest and assessment. 

3.2 Finite centre of mass momentum                                                                                                       

My calculational results corresponding to Cooper pairs with finite centre of mass momentum, are 

presented below to highlight the spatial nature of the pair wave function in this case.  The 

maximum allowed pairing wave vector ‘qmax’ (defined by |W|q = 0 for q= qmax) gives an 

estimate of the coherence length (′ξ′) as said earlier in the ‘general equation for the pairting 

instability’ chapter. I have presented here two tables relating  ξ with different other parameters 

using the 2nd integral formula. I can’t have an assessment of pairing involving finite centre of 

mass momenta by following the first integral formula, as pairing energy can’t be zero in this case 

(reference: point 1, Table 2). Here too the relation between |W|and q is monotonically 

decreasing.                                                                                                                  
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Table 5.The calculated values of qmax and ξ corresponding to δ = 0.001 under different situations 

[12]   

Value 

of 

u

γL
= λ  

The corresponding value of |W| (in 

eV) in case of zero centre of mass 

momentum 

Value of  

′t′ (in 

eV) 

Value of qmax 

(in unit of 1/a) 

Value of ξ 

(in unit of 

‘a’) 

0.0012 1 × 10−7 0.25    3.58 × 10−7   0.28× 107 

 

Table 6.The calculated values of qmax and ξ corresponding to δ = 0.75 under different situations 

[12] 

Value 

of u

γL
=

λ  

The corresponding value of |W| (in 

eV) in case of zero centre of mass 

momentum 

Value of 

′t′ (in 

eV) 

Value of qmax       

(in unit of 

1/a) 

Value of ξ 

(in unit of 

‘a’) 

0.0881    5.783 × 10−11 0.35 2.90 × 10−10 0.345× 1010 

                      8 × 10−7 0.205 1.5 × 10−6 0.665× 106 

0.17                      0.0001 0.25 0.00065142 1535.626536 

                     0.000811 0.205 0.00584 171.2328767 

 

The magnitude of ξ for higher filling (reference: Table 6) indicates a tendency towards real space 

like pairing if ′t′ is reduced progressively (obeying the restriction imposed by inequality 8). This 

is obvious because the raising of the hopping amplitude weakens the binding of the pair and the 

mates can now be separated by a larger distance. Hence the coherence length increases. On the 

other hand increasing of the magnitude of the attractive interaction, causes an enhancement in 

the pairing energy resulting in reduction in the coherence length. 
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4. Conclusion:                                                                                                                                             

 The non trivial change between the electronic density of states in a lattice and in a continuum 

system causes several contrasting behaviour between pairing properties in the two situations 

corresponding to a FL- like scenario. The existence of an upper bound in the pairing energy for 

1D lattice is one such example. In addition, the pairing solution also turns out to be band filling 

dependent in a tricky manner. Finally my calculations show that a realistic fermionic pair 

formation is indeed possible with some constraints, without any necessity at all of invoking LTL 

theory. Similarities emerge in the physical properties of the electron pair formed from Cooper’s 

treatment corresponding to continuum and ours, excepting the striking difference appearing  in 

the form of  occurrences of a maximum allowed band filling for pairing and of an upper bound of 

the pairing energy found in our approach [12]. 
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62 
 

Among the frontier areas of research in condensed matter physics, the topic of non- Fermi liquid 

(NFL) occupies an important place. It has been argued that the NFL systems exhibit the 

phenomenon of the occurrences of Fermi surfaces without long lived quasiparticles. These 

systems include Luttinger liquid in one- dimension (as has been discussed in introduction and 

chapter 3) and Marginal Fermi liquid (MFL) in cuprate superconductors [1,2]. A brief 

introduction of the Luttinger liquid and marginal Fermi liquid has already been done in the 

previous chapters. However, the microscopic origin of MFL behaviour of the self-energy has 

remained an open problem. It is worth emphasizing that extraction of the self-energy from 

experiment is not only of great importance to check the validity of the quasiparticle concept and 

understand the nature of interactions involved but also is an extremely difficult task. By 

causality, the real and imaginary parts of self-energy are related by Kramers-Kronig dispersion 

relations. In principle, if the full spectral function A(k, ω) is known, one could perform an 

inversion to obtain the full self energy spectra by using the Kramers-Kronig transformation [3] . 

However, such transformation has limitations and requires the spectrum from −∞ to +∞ in 

energy. Unfortunately, clean ARPES data from doped cuprates can usually be obtained from 

Fermi level to around half of the band width where complications of valance bands will come in. 

So the process requires further to take a cut-off/extension model at energies above the existing 

data points.  A large number of theoreticians are involved in investigations to better understand 

the normal state scattering rate, which governs the transport properties, but there are serious 

limitations. They measure or infer the scattering rate (∑Im) at a single energy (ω) and do not 

extract its functional form. Other studies that investigate the scattering rate as a function of 

energy are limited to the nodal direction alone. The data presented in my paper provide a 

comprehensive measurement of the functional form of the scattering rate as a function of energy 

around the Fermi surface [4]. 

So I am revisiting Cooper’s formalism for fermionic pairing for overdoped cuprates involving two 

next near neighbour hopping terms in Fermi liquid like background on a lattice. Then the whole 

scheme is repeated in Marginal Fermi liquid- like background, taking the self energy correction of 

the Green’s function to include a more realistic density of states in the calculation. My formalism 

promotes and sysnthesizes the Marginal Fermi liquid- like character of the lightly overdoped 

normal phase with exciton mediated pairing in the concerned materials. 
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I have done my calculation for studying the possible pairing between two fermions in both Fermi 

liquid- like and Marginal Fermi liquid- like backgrounds with phononic mechanism as well as 

excitonic mechanism [4]. I extract various important physical quantities for cuprate 

superconductors, such as coherence length, coupling constant and critical temperature. After a 

careful quantitative comparison of my theoretical results with the experimental ones, I have 

arrived at the strong conclusion of the existence of the electronic mechanism driven pairing from 

MFL like normal phase in the lightly overdoped cuprates. Theoretical demonstrations justifying 

the substantial s-wave component and experiments with Raman scattering and tunneling spectra 

back the conception of a sturdy existence of s- wave symmetry along with other pairing 

symmetry [5]. I have examined the adequacy and feasibility of the s- wave symmetry in intra- 

layer pair formation though the presence of a d-wave symmetry is not ruled out.  

Mathematical Formalism:  

The analogous form of pairing equation including the highly asymmetrical energy dispersion 

relation in two dimensional tight binding hamiltonian by Cooper’s treatment reads as (mentioned 

in chapter 2, equation 9b) [6]: 

(
u

A
) = U =

1

∫
D(Є̃k ) dЄ̃k 

(2Є𝑘 − 2ЄF + |W|)
ЄF +8t(1−δ)+(ћω

boson
−8t(1−δ)θ(8t(1−δ)−ћωboson)

ЄF 

            (1) 

 The equation (1) represents the pairing situation in the ‘passive Fermi Sea’ background. Now to 

examine the realistic concept of pair formation in the presence of an active Fermi sea, I have to 

include the effect of Pauli’s exclusion principle or rather Pauli blocking of the phase space. For 

this a factor 1− f−k − fk has to be incorporated in the 2D single pairing equation. For the finite 

centre of mass momentum  ћq this equation takes the form in the following way-  

1 = U∑
1− f−k+q/2 − fk+q/2

−ϵ + 2ЄF 
k

′⃗⃗  

                        

where fk+q/2 is the probability that there is a carrier of momentum k+ q/2 above the Fermi level. 

This leads to following equation→ 
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1 = U∑
−1+ θ (Є

k+
q
2
− Єk ) + θ(Є

−k+
q
2
− Єk )

(|W| + 2Є̃k )
k

′⃗⃗  

                         (2)                 

The characteristic of the Theta function determines the range of pairing and finally the pairing 

equation corresponding to this ‘active Fermi sea’ background becomes [4]: 

(
u

A
) = (

π2B

2
)

1

−∫

Κ√1− (
Є̃k + ЄF –Є0

2t
)

2

dЄ̃k 

(|W| + 2Є̃k )

ћωboson

0
+ ∫

Κ√1 − (
Є̃k + ЄF –Є0

2t
)

2

dЄ̃k 

(|W| + 2Є̃k )
+

ћωboson

atqSin(ka)

∫

Κ√1− (
Є̃k + ЄF –Є0

2t
)

2

dЄ̃k 

(|W| + 2Є̃k )

ћωboson

−atqSin(ka)
            (3)

 

It may be remarked that our lattice Hamiltonian for Cooper pairing looks somewhat similar to 

negative - U Hubbard model, although the attraction here operates only within a finite energy 

interval. It may be remarked here that to start with we keep both the possibilities of bosonic 

mechanism viz. electronic and phononic open under s-wave pairing scheme. For the MFL scenario 

D(ω) =∑−Im[G(k,ω)/π)/

k

N2                                                 (4) 

  Where G(k,ω) = [1/(ω− Єk −∑(k,ω))]                                                        (5)             

 The above form of the Green’s function for a single fermion on the 2D lattice, includes the self 

energy corrections ∑(k,ω) to implement the many body effects within the system. Researchers 

in general parameterize only ARPES data and suggest various models of self energy consistent 

with the fitted plots [7-10]. As mentioned earlier I have slightly modified the real part expression 

of the self energy as proposed by Varma and take it as  

∑Re(k,ω) = gω ln (
|ω| + ε

ωc

) for |ω| >  T,                                       (6) 
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‘g’ is a real number. ‘ε’ is a doping dependent parameter which increases with reduced wave 

vector. ∑Re(k,ω) is associated with the imaginary self energy which is derived by plugging 

Kramers- Cronig relation viz [3]. 

Instead of infinite extent the range of the integration is kept limited in between the band width 

though. I have explicitely checked the applicability of this expression by plotting the real part of 

self energy against frequency. This small change in the proposed MFL self energy formula and the 

associated parameterization gives an almost accurate matching for the ARPES spectra obtained 

from Bi2212 sample [11]. 

 

 

 

 

 

 

 

 

 

 

 

 

∑Im(k,ω) = −(
1

π
)∫ [

∑Re(k,ω)dω

(ω− ω′)

∞

−∞

                                               (7) 
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Fig 1: A small remodeling of the MFL self energy has been done on the basis of analysis of line 

shape spectra in Bi2212 sample.    

 

 

 

 

Fig: 1a Real part of self energy as a function of 

energy for the superconducting (blue dots) and 

normal states (open red diamonds) for the 

optimally doped and overdoped samples, as 

obtained by reference indicated [11]. The solid 

lines through the normal state data represent 

MFL fits to the data.  

Fig: 1b Remodelling of ∑Re using our formula for Bi2212. 

The red line (below one) is for overdoped and the blue line 

(above one) corresponds to optimally doped region. 

 

The corresponding imaginary part of self energy viz. ∑Im(k,ω)  is obtained by incorporating the 

form of real part of self energy (from fig 1b) in Kramers Kronig relation in a full band width and is 

parameterized with the following function of ω,  to be incorporated in the Green’s function. 

 ƒ(ω) = (−.1129√1.015− 5(ω− .03)2 )                 (8) 

 



67 
 

Here are the two plots for this function. 

 

 

 

 

 
Figure 2a: 
Graph of Imaginary self energy values obtained 

from the Kramers-Kronig relation 

Figure 2b: 
Plot of corresponding function that parameterizes 

the discrete points of the graph at left.  

 

The fitting of imaginary self energy is quite tricky as it is considered to be linear with frequency 

but shows a visible deviation from linearity as obtained from different spectroscopic experimental 

result [7-10]. My graph shows a hyperbolic nature of ∑Im(k,ω) as a function  of ω, but behaves 

almost linearly over a large frequency region. The data presented in my paper provide a 

comprehensive measurement of the functional form of the scattering rate as a function of energy 

around the Fermi surface. More importantly, my form for ∑Im(k,ω) obtained from Kramers- 

Kronig relation ( Figure 2a) shows a noticable qualitative similarity with those extracted from 

ARPES [7-8]. On the next page there are some ARPES graphs which more or less deviate from the 

standard linear nature of the imaginary self energy with frequency (Figs. 3a-3d) [7-10]. 
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Figure 3a: 
The results of the fitting procedure for Bi(Pb)-
2212 OD75: for real  and imaginary   parts of the 
self-energy [7]. 
 

 

 
 
Figure 3b: 
The fitting of the EDC (energy distribution 
curve) data for the energy dependence of the 
scattering rate of the high temperature cuprate 
superconductors obtained from angle resolved 
photoemission spectroscopy [8].  

 

 
Figure 3c: 
Real part and imaginary part of self energy as 
obtained by angle-resolved photoemission 
spectroscopy for overdoped cuprates [9]. 
 

 

 
 
 
 
 
 
Figure 3d: 
  Calculated imaginary part of self energy for 
overdoped LSCO from ARPES data.[10] 
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The density of states (DOS) associated with the total self energy of the following form is plotted 

below [12]. Therefore the total self energy takes the form

∑(k,ω) = ∑real(k,ω) + i ∑im(k,ω)

= { 0.24(ω ln [
Abs[ω+ .012]

. 2
]) + i (−.1129√1.015− 5(ω− .03)2 ) }

/2002                (9) 

 

 

 

Figure 3 Plot of density of states vs energy using our theoretical expression of self energy 

It must be kept in mind however, that the pairing equation is strictly not valid at ω = ЄF as the 

quasi particle weight vanishes there [13] 

In my formalism the band is completely empty (i.e filling factor δ=0) when doping concentration is 

100%. Then introduction of carrier raises the degree of band filling with δ=1 representing half 

filled band. So the lower portion and the very upper portion of the band represents extremely 

overdoped and extremely underdoped region respectively as per the phase diagram (ordering 

temperature vs doping concentration) of the cuprate superconductors [14].  The region in between 
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these two represents optimally to moderately overdoped region where superconductivity is likely 

to occur. The attractive coupling constant (λ) has been calculated using the formula [6] 

λ = (
u

A
)D(ЄF)                                                                                                  (10) 

The idea of the coherence length comes out clearly by understanding the spatial nature of the pair 

wave function associated with the finite centre of mass momentum case. The maximum allowed 

pairing wave vector ‘qmax’ (defined by |W| = 0 for q=qmax) gives an estimate of the coherence 

length (′ξ′), which is of the order of reciprocal of qmax. The finite centre of mass momentum 

analogue of the pairing equation is 

1 = u/A∑
1

{(Є
k+

q
2
+ Є

−k+
q
2
) − ϵ}

k

                                                                          (11) 

With  Єk+q/2 + Є−k+q/2 = 2Єk + 2t′(aq)2Sin(kxa)Sin(kya) 

The upper and lower limit of Єk has been modified into   

ЄF + ћω
boson

− t′(aq)2Sin(kxa)Sin(kya)/2 and ЄF + t′(aq)2Sin(kxa)Sin(kya)/2    (12) 

Calculations and results:    

Scanty experimental data leads to an ambiguity in the energy of the boson, mediating pairing. I get 

good and realistic result in the range of 0.1- 0. 2 eV which in general is catagorised under electron 

originated pairing mechanism [15]. It may be remarked that a vertex correction can become quite 

important in the first principle calculation for ‘u’ if the bosonic energy (specially relevant for 

excitonic boson) becomes comparable to the Fermi energy, which is not the case here [16]. 

Both phononic and excitonic energy value  has been incorporated in the pairing equation as the 

bosonic energy mediating pairing to check the substantiality of these two .The whole calculation 

is done in such a manner so that the basic Fermi Liquid- like criterion (u< 4t) is maintained. The 

relevant parameters presented in Table-1 are quite realistic [17].                                                                                                                                                                  
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Table-1: Parameters corresponding to pairing mechanism 

Parameters Electronic mechanism Phononic mechanism 

Bosonic energy (ћωboson) 0.1-0.2 eV             0.01-0.02 eV 

   t                        0.435 eV  

   t′                         0.1 eV  

   t"                        0.039 eV  

 

FL like scenario: 

The estimates for coherence length obtained in this case, is presented in the Table below 

Table 2: The calculated values of coherence length of Bi2212 for u/A=1 eV 

 Electronic mechanism  Phononic mechanism  

          δ Value of ξ (in unit of ‘a’) Value of TC Value of ξ (in unit of ‘a’) Value of TC 

0.25 116.28 27.06      -       - 

0.5 39 90   117.64        3 

1 38 100   149.25     7.07 

1.15 143 22.58       -        - 

1.3 333 10.48       -        - 

 

Generally real high- Tc cuprates (both in the under and overdoped regions) have short in-plane 

coherence length [18]. My theoretical estimates (shown in Table 2) point to the fact that  

1) The in- plane coherence lengths corresponding to excitonic mechanism are much shorter 

than those in the conventional phonon driven 3D superconductors. The values of critical 

temperature in phononic mechanism are not realistic too. Lowering of the magnitude of 

coherence length or enhancement of critical temperature in the filling factors other than δ 

=0.5 and 1 needs a large increase in the phonon mediated attractive interaction. This 

would violates the FL scenario and make it inappropriate for the overdoped phase. 
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Therefore, the excitonic mechanism is the most feasible one for intra- layer pairing in the 

overdoped regime [4].       

2)  The above calculations show the most realistic signature of pairing in moderately 

overdoped (intermediate band filling range namely δ= 0.5-1) region. The coherence 

length is smallest and in the vicinity of half filling. Otherwise it is too long to be realistic. 

But the coherence length is not of the order of experimental value with FL like description for the 

normal phase. According to the Table 2, the smallest coherence length is around 145 Å 

(38 lattice spacing)  which is two or three times greater than the experimentally obtained value of 

coherence length. 

If I try to look into the practical significance of this result then I recall that as per the experimental 

phase diagram of cuprate superconductors the underdoped normal regime doesn’t obey the FL 

theory and superconductivity breaks down in extremely overdoped region [14]. The non- feasible 

result regarding the coherence length in the upper and lower phase of band beyond a particular 

filling factor with FL background indicates an unrealistic situation for pairing in underdoped and 

extremely overdoped regime upholding the phase diagram. So following the above result obtained 

from FL- like scenario, I now do my calculation in MFL like scenario with excitonic mechanism 

based pairing in the intermediate band filling range. 

MFL- like scenario: 

 Table-3: Parameters corresponding to pairing in Bi2212 for a filling factor δ=0.99 

Bosonic 

energy 

Value of u/A=1.14 eV Parameters     Values 

  Coupling Constant (λ) 0 .44352 

0.1 eV 1.28 Coherence length (in unit of lattice constant)  14.28 a 

  Temperature  85.76K 

  Coupling Constant (λ)  0 .4 

 0. 15 eV 1.14 Coherence length (in unit of lattice constant)   17.85 a 

  Temperature    90K 
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Strikingly the values of these three definitive signatures of overdoped cuprates -1) Short in-plane 

coherence length 2) Strong coupling constant and 3) High critical temperature are very much 

consistent with the experimentally obtained data for the relevant materials [19]. The qualitative 

result regarding the change of coherence length with the filling factor remains same as for the FL 

like description for the normal phase. 

The critical temperature is the temperature correspondence of |W| which was extracted from the 

conventional Cooper’s and BCS equations corresponding to the isotropic 3D case [20].  

 W = 2
 KTc 

2

 1.13 2ћωboson

                                (13) 

I however consider the usage of the equation (13) here to be very limited as this is appropriate for 

3D isotropic system, whereas our calculation is done in 2D. Nevertheless, we still compare the 

estimates of the coupling constant from the two approaches. Analysis of the available experimental 

results from Angle Resolved Photoemission Spectroscopy (ARPES) and from polar angular 

magnetoresistance oscillations show the presence of a 3D coherent electronic behaviour in 

overdoped phases of some of the cuprate superconductors. Investigation of the oscillations shows 

that at certain symmetry points however, the Fermi surface exhibits properties characteristic of 2D 

systems[21]. This striking form of the Fermi surface topography, provides a natural explanation 

for a wide range of anisotropic properties both in the normal and superconducting states of this 

system.  

The other two parameters (λ and ξ)are derived numerically by using the pairing equation. The 

coupling constant lies in the range, i.e. λ~0.4 for Bi2212 and coherence lengths are of the order of 

10
−1 Å conforming to experimental values of till date [18]. 

In Cooper’s model in continuum or in BCS Theory ′λ′ is independent of ћωboson. According to 

McMillan’s equation (obtained by simplification of Elliashberg’s equation) however λ is inversely 

proportional to ћωboson [22]. This is in qualitative agreement with the variation seen in Table 3.  
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Conclusion and Discussion:  

My calculations following a MFL- like description of the normal phase with boson mediated 

pairing, reproduces real physics regarding the coherence length, coupling constant and critical 

temperature of the cuprate superconductors in general agreement with more sophisticated many 

body treatments like Eliashberg scheme and with experiments on real superconductors more 

sensitively than by FL like description does [4]. From this viewpoint, the MFL like scenario with 

electronic mechanism seems to be more feasible one for the pairing in cuprates [23].                                                                                                                           
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Future Plan: 
1) Since ξ calculated for quasi 1- D Bechhgard salts is an intra-chain parameter, it is difficult to 

obtain the corresponding three dimensional result directly. For that both intra- chain pairing and 

inter- chain pair hopping processes will have to be considered explicitly, so that the anisotropy of 

the system is incorporated while describing the process leading to superconductivity. I have 

confined my analysis only to the particle particle pairing channel in a single electronic band. The 

possibility of existence of fermionic pair states or fermionic truly bound states within the 

forbidden bands (both above and below the band under consideration) is itself a very challenging 

problem and needs detailed investigation in future. A more detailed and intricate calculation 

involving dielectric function extracted from σ(ω) and with inclusion of longitudinal modes will 

be carried out as a future project.                                                                                                                                                           

2) Also I am interested to work on d- wave symmetry involved pairing in cuprate superconductors 

in both underdoped and overdoped regime. 
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